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0. Introduction

The BartStation isintended to demonstrate how to construct a simple video game system using an 8-bit
microprocessor, ROM storage, and afield programmable gate array (FPGA) for the video output. It's
something that I’ ve always wanted to do. Towards the end of the fall 2005 semester, | decided to
implement it for both my EE 426 (Microprocessor Applications) final project and my EE 493F independent
study. Different parts of this project applied to different requirements of these courses.

For simplicity, the video output is from aframe buffer which is actually a handicap for low-performance
systems. Typically, dedicated tile and sprite hardware is used to spare the CPU from having to draw the
screen. Frame buffers al so occupy much more space but, luckily, memory is cheap these days. Since this
was my first FPGA project involving video, it wasagood decision. A Sega Genesis joypad was used for
input because of its standard DB-9 connector and the ease with which it can be interfaced. Audio
capabilities were not implemented.

An 8 MHz ZiLOG Z80 was chosen as the CPU for two reasons. | wanted to use something other than an
8051 microcontroller which we typically use in class. | was bored with it and do not particularly like its pin
configuration — dedicated ports are unnecessary for this project and the multiplexed data and address bus
means an extra latch must be used for addressing.

nimendo GAME BOY..

Figure0.1 Pac-Man, 1980. Figure0.2 Nintendo Game Boy, 1989.

Secondly, and more importantly, I’ m interested in older video game systems where the Z80 happens to
appear very often as either the main CPU or sound co-processor. Two iconic machines, among countless
others, used the Z80 as their CPU: Pac-Man, the arcade game (figure 0.1), and the Nintendo Game Boy
handheld system (figure 0.2.) Therefore, the Z80 is an obvious choice for a“homebrew” project.

A Xilinx Spartan-3 FPGA on Digilent’s Spartan-3 Starter Kit Board was used to implement the video
hardware. The board includes a 200,000-gate Spartan-3 X C3S200, a VGA connector and 1IMB of SRAM
which is used as aframe buffer.

Therest of this document describes the design of the system in detail . The appendices include schematics
and code. Appendi x E contains pictures of my implementation.
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1. 780 Circuit

The CPU, memory, joypad, and the LVCMOS interface for the FPGA are all implemented with discrete
components on a breadboard. It is collectively referred to asthe “Z80 circuit.” The schematic is availablein
Appendix A. A list of parts and materialsis provided in Appendix B. Here, we will discussthe design of
the Z80 circuit.

11780

The Z80 isthe CPU of the BartStation. It initiates, controls, and coordinates all activity of the system by
executing game code. Figure 1.1 shows alogical diagram of the Z80 with all signals grouped by function.
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Figurel.1l Z80signals.

Unused output signals are left unconnected. These are M1, MREQ, IORQ, RFSH, HALT, and BUSACK.
Theinput signals BUSRQ, INT, and WAIT are also unused and are tied to Vcc to permanently de-assert
them. Therest of the signals are discussed throughout this section.

1.2 Oscillator

A square wave oscillator isrequired by the Z80 to generate its clock signal. This clock signal effectively
synchronizes all activity in the circuit because each device responds to signals from the CPU. The video
controller usesits own clock and is therefore the only component that is asynchronous with respect to the
CPU.

Figure1.2 8.000 MHz half can TTL oscillator.
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Some microprocessors provide two oscillator inputs which internally lead to an inverter to create feedback
(and thus establishing an oscillation.) The designer will typically attach a crystal oscillator and a couple of
capacitors. The Z80 hasonly a single oscillator input, CLK, and expectsa TTL waveform. Thisis
accomplished by using a TTL oscillator which has three pins: Vcc, Gnd, and the output signal. The
BartStation’s CPU uses an 8.000 MHz oscillator (figure 1.2.)

1.3 Reset Circuit

To reset the 280, the RST pin must be pulled low for some small amount of time and then set high again to
allow the processor to operate. The circuit in figure 1.3 does just that. In its normal state, with the button
released, the capacitor is charged through the 10 K-ohmresistor which brings the voltage at the RST node
to Vcc. Pressing the button discharges the capacitor through the 1 K-ohmresistor with atime constant of 10
ms. When the capacitor is discharged, the equivalent circuit appears as aresistor divider and the voltage
should be 0.45V (inredlity, it isabout 0.5), which isinterpreted by the Z80 as alogical low.

VCC
o

§Rl

10k

l ™ >RsT

1 SwW
T 1guf of Reset Button

R2

1k

0
Figure 1.3 Reset circuit.

Theresistors and capacitor are necessary to allow the voltage to switch from high to low over ashort time
constant. They also serveto protect the reset pin by limiting the amount of current that will flow when the
button is pressed. Although it’ slikely that the Z80 has afield-effect transistor connected to its reset pin
which does not draw current, an in-rush current charging the gate capacitance can still damage the device.
Changing the capacitor will only change the time constant. A 1 puF or 0.1 uF capacitor might also work.

1.4 Memory

A key component of any computer system is memory, both run-time and permanent. The BartStation stores
its programs (its games, effectively) in read-only memory (ROM.) In many commercial video game
systems, especially those from the early 90’ s and older, the game ROM s were |ocated on separate
cartridges allowing different games to be played on the same base system. In our case, the ROM chipis
simply located in the game system circuit itself. After all, thisisn’t a production machine!

Random access memory (RAM) isonly available at run-time and is volatile; that is, it does not retain its
contents when the power is off. It is used by programs for storing data that must be updated and
manipulated while the software is running. Static RAM (SRAM) is the simplest form of memory to
interface to. Aslong as power issupplied to it, it will remember what was written and will not lose its
contents over time as dynamic memory does. This meansit does not need to be refreshed — hence theterm
“static.”
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Figure1l.4 CAT28F512 64KBx8 Flash Memory. Figure1l.5 6116 2KBx8 Static RAM.

In the interest of making life easier for us, the BartStation uses flash memory asits ROM medium.
Typically, mask ROMs (which can be burned in once and cannot be changed) or EPROM s (electrically
programmable ROMs which can be written multiple times and are erased with ultraviolet light) are used in
video game systems. These have major disadvantages for impatient and poor students such as myself. Mask
ROMs are intended for high-volume production systems and cannot be re-written. EPROMs are often used
for prototyping but they require aUV eraser and must be exposed for several minutes before being reused.
This can slow down testing.

Flash memory does not have these limitations. Despite being more expensive per unit than EPROMS, flash
memory chips are well worth the modest price premium when their ease of use is considered. Flashis
electrically programmable and erasable. Many flash parts are available with pin-outs and interfaces
virtually identical to traditional ROM chips.

One such part isthe CSI CAT28F512 (figure 1.4.) It is pin-compatible with similar devices such as the
Atmel AT29C512 and the SST 29EE512. These devices can be written with most standard device
programmers or one can choose to build a custom programmer. Writing is done in asimilar fashion as to
SRAM with the exception that a programming voltage must be applied at the Vpp pin (unlessitisa5V-
programmable part) and data must be written to addresses that lie in the same “ sectors.” The details of this
procedure are beyond the scope of this document. We are only concerned with reading the device.

To do this, the procedure is quite simple: An address must be placed on the address bus (pins A15-A0), the
chip enable (CE) must be asserted by pulling it low, and the output enable (OE) must then be pulled low to
allow the data to appear on the data bus (1/07 — 1/00) after a small accesstime delay. In the case of the
BartStation, timing constraints are a non-issue because the memory is much faster than the 8 MHz Z80
whoseread timing is shown infigure 1.6. By the time the Z80 samples the bus for data after asserting the
address, the datais certain to be available.

The Z80 data and address buses are connected directly to the CAT28F512, except for pins A14 and A15.
These are tied to ground. This providesfor 16 KB of ROM space and was done because the entire address
space of the Z80 is 64K B — the same size as this chip provides! In order to leave room for other memory
regions and 1/0O areas, 16 KB was chosen as the size of the ROM space. The OE pin is connected to the
Z80'sRD signal.



SRAM issimilarly simple. The BartStation uses the Hyundai 6116 (figure 1.5) which provides 2KB of
memory. Reading is exactly the same as with the flash chip. The Z80 is connected to the SRAM in the
same manner as the flash except for two differences: Only pins A9-A0 are connected (for 1KB of memory,
an arbitrary design decision) and the Z80's WR signal is connected to the WE pin (write enable, which
allows data to be written.)

How these memories are mapped into the Z80 address space is discussed in section 1.5.

Note that when the output enables are not selected, the data buses are put into a high-impedance (high-Z)
state which does not drive the bus. Thisis an important point becauseit allows for the creation of buses
shared by many devices. If two devices were to access the bus at the same time, they could be damaged due
to ashort circuit. The high-Z state effectively makesit appear as though the device is no longer even
connected to the bus.

Memaory Read Cycle Memoary Write Cycle
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Figure1.6 Z80 memory accesstiming.

The 280 memory timing is shown in figure 1.6. Reads and writes take 6 clock cycles each and the time
between address set-up and data read/write is on the order of at least a cycle or two which is plenty of time
for our particular ROM and RAM chips (to verify this, see their respective datasheets.) The MREQ and
WAIT signals are unnecessary for our purposes.

1.5 Address Decoding

Address decoding is the process of selecting devices according to their memory address. We want
particular ranges of the Z80' s address space to correspond to particular memory chips and 1/0 registers.
Thisisaccomplished by generating chip enable signals using the address as an input so that only the
requested device respondsto aread or write. In the BartSation, the 74HC145 (figure 1.7), a 4to-16
decoder, is used along with a 74HC08 quad AND gate (figure 1.8.)
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Figurel.7 74HC154 4-to-16 decoder. Figure1.8 74HCO08 quad 2-input AND gate.

The decoder works by mapping each possible 4-bit number presented on itsinput pins, A3-AQ, to one of
the output lines, Y 15-Y0. There are 16 unique outputs which is also the number of total possible
combinations on the inputs. Address decoding is accomplished by connecting some of the higher order
address bitsto the decoder inputs. Different address ranges will cause unique outputs to be selected. The
decoder’ s outputs happen to be active low, meaning they are 0 when selected and 1 otherwise. Our memory
chips have active low chip enable pins and can therefore be connected directly to the decoder.

The upper 4 bits of the Z80 address bus are used for decoding which allows for atotal of 16 possible
unique devicesto be selectable. In our case, the device mapping is shown in table 1.1.

Table1.1 Mapping of address ranges to devices in the BartStation.

A15-A12 Device
$0 ROM
$1 ROM
$2 ROM
$3 ROM
$-$7 Unused
$3 Video Data Register
9 Control Register
$A Joypad Status Register
$B-$E Unused
$F RAM

From the table, it can be seen that the ROM is selected by 4 distinct decoder outputs. When an output is not
selected, itisset to 1, not high-Z, so we cannot wire all of these directly to the ROM’s CE pin. Thiswould
cause the various outputs to fight for control of the node connecting them and could possibly resultin a
short circuit between two or more of the pins. The solutionisto AND all the ROM decoder outputs
together. That way, when any one of them is selected (pulled to alogic 0, indicating the ROM should be
enabled), the AND function will return 0 thereby asserting CE. Otherwise, they will al be 1 and the result
will be 1, disabling the ROM. Figure 1.9 shows how the 3 of the 4 2-input AND gates are strung together to
perform this function; pin numbers are included.
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The decoder is always kept enabled in this design by tying both enable bits, E1 and EO, directly to ground.
Some applications may require decodersto be disabled (forcing all output pinsto 1) but in the case of the
BartStation, all activity on the system address and data buses is caused by memory and 1/O accesses.

1.61/0 Registers

There are 3 registers mapped to the address space; two are write-only and oneisread-only. Thefirst of
theseisthe Video Data Register which appears at $8000 and iswrite-only. It is connected directly to the
FPGA board and consists of 8 data bits (the Z80 data bus), an enable signal from the decoder, and the Z80
WR signal. The FPGA interface is described in more detail in section 3.

The other write-only register isthe Control Register. Part of it consists of the data bits routed to the FPGA
and its own enable signal. Additionally, one data bit is also passed through alatch (figure 1.10) to the
joypad to control button multiplexing. The joypad is described in more detail in section 2. Because the latch
enable bit is active high and the decoder is active low, an inverter (figure 1.11) is necessary. The output
enableisaways active (pulled to ground) because the latched multiplex bit must always be available to the
joypad. The 74HC14 was chosen because it was readily available. It happens to be a Schmitt trigger as
well.
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Figure1.10 74HC573 8-bit latch with 3-state Figure1.11 74HC14 Schmitt trigger inverter.
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1.7 Interrupts

IRQs, or normal, mask-able interrupts, are not supported by the system. The IRQ line on the Z80 is always
deactivated. Interrupts are only available in the form of non-maskeable interrupts (NMI) which cannot be
disabled by software except by avideo controller setting. The FPGA’s VBL interrupt line is connected
directly to the Z80 and istriggered once per frame at the beginning of the vertical blanking (or retrace)
period. This occurs at the same rate as the display refresh: 60 Hz. The Z80’s CMOS logic levels are such
that a 3.3V signal from the FPGA will be correctly interrupted as‘1’, so no level shifting electronics are

necessary.

1.8 Power Supply

The Z80 circuit runs off of a5V power supply. In order to achieve this, a 7805 linear regulator (figure 1.12)
is used to generate thisfromahigher DC voltage provided by the AC/DC wall -plug adapter (approximately
14-18V.) Refer to the schematic for details.

Figure1.12 7805 voltage regulator.

A major advantage of a 7805-based power supply design over othersisthat it is extremely simple,
requiring only acouple of capacitorson itsinput and output. The drawback isthat it is afairly inefficient
power supply which dissipates power in the form of leakage current. The BartStation’s 7805 becomes very
hot during operation despite drawing under 100 mA. A heat sink is recommended. A superior design would
involve a switching power supply chip. Due to time constraints and part availability, this was not
attempted.

All ICsin the circuit include a decoupling capacitor of 0.1 pF between their Vce and Gnd pins which is
placed as close as possible to the chip. The purpose of adecoupling capacitor isto prevent the voltage
supply onits corresponding chip to drop if the device suddenly switches a number of pins. Inductance and
other lossesin the pins and connecting wires can cause atransient spike in current which can pull Vcc
lower than normal. The capacitor will begin to discharge while thisis occurring and servesto decouple the
chip from the circuit’s Vcc rail.



2. Joypad

A Sega Genesis joypad (figure 2.1) is used by the BartStation because it uses a standard DB-9 connector
and is easy to interface (hardware and software-wise.)

Figure2.1 Standard Sega Genesis 3-button joypad.

The joypad has adirectional pad (up, down, left, and right buttons), a Start button, and 3 additional buttons:
A,B,and C.

2.1 Pin-Out

The joypad uses afemale DB -9 connector (figure 2.2) and the game system has a matching mal e connector
(figure 2.3.)

9 6

Figure2.2 Joypad'sfemale DB-9 connector. Figure 2.3 BartStation’s male DB-9 connector.

The pin mapping is shown in table 2.1. There are two columns per pin because of the multiplex bit (MUX)
which is used to select which buttonto map to a given pin. There are too many buttons to allow for adirect
mapping so, internally, the joypad uses a 74HC157 quad 2-to-1 multiplexer.

Table 2.1 Joypad pin assignments.

Pin | Function (MUX = 0) | Function (MUX = 1)
1 Up Up

2 Down Down

3 None (grounded) Left

4 None (grounded) Right

5 Vcce (5V) Vce (5V)

6 Button A Button B

7 MUX input MUX input

8 Gnd Gnd

9 Start Button Button C

The joypad is active low; when abutton is pressed, the corresponding pin is 0, otherwise, itis 1.




2.2 Interfacing

The joypad is connected to two 74HC573 latches in the BartStation. Oneisfor output and only usesa
single bit (MUX.) It is selected by the same address as the Control Register. The other is used for input and
haspins 1, 2, 3, 4, 6, and 9 connected.

Reading the complete button status is a4-step process:

Set MUX to 0.
Read buttons.
Set MUX to 1.
Read buttons.

AW E

Of course, the order of the MUX settingsisinterchangeable. Tables 2.2 and 2.3 show the format of the
Control Register (address $9000) and Joypad Status Register (address $A000), respectively.

Table2.2 Control Register.
Bit 716[(5]14| 3| 2 1 0
Name JP| M2]| M1]| MO

Table 2.3 Joypad Status Register.

Bit Multiplex | 7|1 6| 5 4 3 2 1 0
JP=0 Up | Down 0 0 A | Start

B

utton —55=7 Up | Down | Left | Right | B| C

The JP bit in the Control Register is mapped to MUX. Sample code is provided in section 5.

2.3 6-Button Joypad

Segareleased a 6-button joypad (figure 2.4) for the Genesis which was backwards compatible with the 3-
button model. The additional buttons(X, Y, Z, and Mode) are accessible by toggling the multiplex bit
between 0 and 1 in a particular sequence (table 2.4.) The multiplex bit must be written in the indicated
order or the joypad will reset to the beginning of the sequence. After avery short timeout, the joypad
automatically resets to maintain compatibility with 3-button pads.

Figure 2.4 6-button joypad.

Some old Genesis games read 3-button pads using more than the 4-step sequence described earlier. This
could cause problems when a 6-button pad was used because the wrong button status would be returned
after afew reads. Segaincluded aworkaround in the form of the M ode button which, if held down while
powering up the system, would disable the additional buttons and emulate a 3-button pad.

It may be possible to detect a 6-button pad by checking that step 4 returnsall 0’sin bits5to 2 and step 6
returnsall 1'sin those same bits.
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It isrecommended that the 4-step sequence (for 3-button pads) or the 6-step sequence (for 6-button pads)
be performed only once per frame to avoid any problems.

Table2.4 Six-step sequence for 6-button joypads.

Bit
Step | Multiplex 716] 5 4 3 2 1] o
1 JP=1 Up | Down | Left | Right | B| C
2 JP=0 Up | Down 0 0 A | Start
3 JP=1 Up | Down | Left | Right | B| C
4| =0 Button 0] 0 [ 0] 0 [AlSat
5 JP=1 Z Y X Mode | B C
6 JP=0 1 1 1 1 A | Start

-11-



3. FPGA-t0-Z80 Interface

The Z80 operates with 5V CMOS logic whereas the Spartan-3 uses LVCMOS 3.3V logic and is not 5V-
tolerant. There are anumber of ways to perform voltage level shifting, including aresistor divider network
and atransistor switch. However, the simplest, and the one suggested by Xilinx, isto use aseriesresistor.
To understand how this works consider figure 3.1 which is a schematic of the ESD protection diodes
immediately inside a Spartan-3 /O pin.

VCCO
o

D1
FPGA 1/O Pin

D2

0
Figure3.1 Structure of the ESD protection diodes on a Spartan-3 1/0 pin.

Vcco isthe output driver voltage and is 3.45V. The maximum voltage allowable at the input pin without
causing oxide stressis 4.05V. This gives adiode voltage drop of 4.05-3.45=0.6V . The diode happensto be
forward biased at 0.5V, so we are now operating under the current constraints of the diode. Xilinx givesthe
maximum current at 0.6V to be 5.51 mA. Finally, the input voltage from the driving device must be
considered. To be safe, a 10% tolerance is used yielding a maximum input voltage of 5V+10%=5.5V. Our
seriesresistor will be placed between the driver and the FPGA asin figure 3.2.

VCCO VCC

R
NV

+

Figure 3.2 Equivalent circuit of the FPGA -Z80 interface.

Determining the resistor value is asimple matter of solving the loop equation for the equivalent circuit.

Weo —IR =W, =Vipg

Voo = Vo~ Vg 55V-06V-345V
I 5.51x107 A

The closest standard resistor sizes are 270 and 300 ohms.

E = = 263 ohms

-12 -



4. \Video Controller

Video isoutput viaaVGA port to a standard computer monitor at aresolution of 320x240 pixels. The
actual VGA timing isfor a 640x480 display but each pixel isdoubled in both the vertical and horizontal
directionsto halve the resolution.

il |

Figure4.1 Spartan-3 Starter Kit Bo. TVG priI th top-left.

The Spartan-3 Starter Kit Board (figure 4.1) conveniently provides aVGA port connected to the FPGA.
Thereisalso IMB of high-speed SRAM which is used by the BartStation to hold the frame buffer.

Appendix C contains the video controller VHDL code.

4.1 VGA Interfaceand Timing

There are 5 signals that compose aV GA output: Red, Green, Blue, Vertical Sync (VS), and Horizontal
Sync (HS)) HS and V'S control the horizontal and vertical scan rates, respectively, and therefore the
resolution. The standard VGA resolution is 640x480 pixels at 60 Hz and the timing for HSand VSis
derived from a 25 MHz clock. Information on VGA timing can be easily found on the web or in the
“Spartan-3 Starter Kit Board User Guide.”

To implement the correct timing for the HS and V'S pul ses, a series of counters were used based on the 25
MHz pixel clock (whichin turnisderived from the board’ s 50 MHz clock.) When the counters reach
certain values, the sync lines are toggled.

Colors are represented interms of their primary components: Red, green, and blue. Each corresponding
signal is analog and can range from OV to 0.7V. The Starter Kit Board only allows for one bit of resolution
for each of the components giving atotal of 8 possible colors.

4.2 Frame Buffer

A frame buffer is kept in the Starter Kit Board’s SRAM. It islinear and each pixel occupies one byte for a
total of 76,800 bytes (320x240 pixels.) During the refresh period, pixels are read from the frame buffer and
sent directly to the VGA R, G, and B lines.

-13-



Frame buffers are highly disadvantageous for use in low-performance video game systems and no early
systems used them. The bandwidth is simply not sufficient to send a screen full of pixels every frame (or
even at half or aquarter of the refresh rate.) A better solution isto use tiled background layers and
hardware sprites. In such schemes, the pixel datafor all tilesiswritten once and updated infreguently.
Tiles are positioned by changing pointers (often less than 16 bitsin typical implementations) in atable.
Hardware scrolling is almost always provided. Sprites can be positioned and oriented according to
parametersin atable aswell.

Nonetheless, frame buffers are very simple to implement and the decision was warranted for that reason
alone.

4.3 Input Port

The Z80 cannot address a 76,800-byte frame buffer with its 16-bit address bus. It would also be impractical
to implement a proper bank switching scheme to map part of the frame buffer into the Z80’s memory space
because of the number of lines that would have to be routed from the FPGA board. Instead, asimpler
approach was chosen, one which is common in actual video game systems: Input “ports” or registers that
provide a gateway to the frame buffer.

There are two write-only registers provided by the video controller which are collectively referred to as the
“input port.” Thefirst is Video Data Register (table 4.1), mapped to address $8000, and the second isthe
Control Register (table 4.2), mapped to $9000 and shared with the joypad multiplex bit. The Control
Register isprimarily used to load an address into an internal frame buffer write pointer and the Video Data
Register isused to actually send data to the frame buffer, automatically incrementing the pointer for each
pixel. In order to relieve the CPU of the burden of having to calculate an offset into the frame buffer and
passit along, the video controller can handle that directly and the CPU must only send X and Y
coordinates.

Table4.1 Video Data Register. The purpose of the bits depends on the current Control Register mode.
Bit 716|543 ]2]1]0
Name | D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO

Table4.2 Control Register.
Bit 7(6|5]14] 3] 2 1 0
Name JFP|M2| M1]| MO

How the Video Data Register isinterpreted depends on the Control Register Mode. The procedure for
sending datato the input port isto write to the Control Register, setting the mode (which islatched), and
then writing to the Video Data Register. Table 4.3 shows the bit settings for the different modes.

Table4.3 Dataregister modes.
M2-MO Mode
000 Data mode.
001 X coordinate low.
010 X coordinate high.

011 Y coordinate.
100 Settings.
Reserved.

Thefollowing is a description of the various modes:
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Mode O0: Data Mode

In thismode, only the lower 3 bits of the Video Data Register matter. D2-DO are red, green, and
blue, respectively. This color dataforms a single pixel which iswritten to the frame buffer at the
current internal write pointer address. The pointer is automatically incremented after each write.

Mode 1: X Coordinate L ow

Because the screen is 320 pixelswide, 9 bits are required to represent an X coordinate. This mode
accepts the lower 8 bits of that coordinate which isin turn used to calcul ate a new write pointer
address. If the X coordinate written is greater than 319, the results are undefined.

Mode 2: X Coordinate High
Thisisthe most significant bit (the 9”’) of the X coordinate.

Mode 3: Y Coordinate
Thisisthe Y coordinate. If it exceeds 239, the results are undefined.

Mode 4: Settings

Thismode is used to configure the video controller. Bit DO controls the display (1 turnsit on, O
turnsit off causing black pixelsto be output) and D1 controlsinterrupts (1 enables them, 0
disables them.) The display and interrupt settings do not affect the operation of the other modes.

Addresses and data may be set while the display is on or off. The X and Y coordinates are |atched
internally and the write pointer is updated each time they are changed. However, the latched coordinate are
never updated internally, even when the write pointer auto-increments. The next time any part of the
coordinate is changed, the write pointer will be calculated using the new bits and the old coordinates from
the last time they were written.

An example of where thisbehavior is useful isin asprite renderer. The X coordinate can be set once and
then, to advance to the next line, only the Y coordinate needs to be updated. Each time this occurs, the
pointer will be reset to the original X coordinate, which is the desired behavior.

The frame buffer can be written at any time, including the active display period when the screen is being
scanned and the frame buffer is being read out. Writes take priority over reads so undefined pixelswill be
output during such times, but these will quickly be refreshed during the next frame. Transferring extensive
amounts of datato the frame buffer during the display period will cause noticeable flicker and artifacts.

4.4 Asynchronous Operation of the Input Port

Theinput port hardware interface isimplemented as 8 data buslines, 2 enable lines, and an input clock.
The enable lines are taken off of the address decoder and are used to select which register to write. The
input clock isthe Z80 WR signal. Examining the timing in figure 1.6, we can see that WR goes low for a
while during awrite. Thisfalling edge transition is used to detect when awriteis occurring and is what
allows the internal write pointer to be automatically incremented.

There was along-standing bug in theinitial VHDL code which caused memory writes to randomly fail
dozens of times per frame. Pixels from the image would sometimes be misplaced or duplicated around
random parts of the screen and would remain static, indicating that they had been committed to memory in
the wrong locations. At first, the quality of the input signal was suspected, but was quickly ruled out after
some testing. It was also observed that the misplaced pixels were always of the same colors used in the
image and the write pointer never failed to be updated.

It turns out that the problem was caused by the asynchronous input signalsinterfering with the SRAM state
machine. This caused data to sometimes be written to the wrong location (probably to where the refresh
process was currently reading from.) The FPGA clock has no frequency or phase relation to the Z80 clock,
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therefore, transitions on the input lines (including the input clock line) appear to be completely
asynchronous to the FPGA logic. The presence of such signalsin a synchronous circuit can yield
unpredictable results because changes can occur at any point in the logic due to timing constraints not being
obeyed. The solution isto latch the signals and synchronize them.

At first, | tried something similar to listing 4.1. The idea was to change a synchronized signal (or so |
thought), wri t e_t ri gger, each time data was detected on the input port. Then, a process operating on
the 50 MHz clock would check to see if a change occurred and, if so, would trigger an SRAM write
procedure.

Listing 4.1 Incorrect synchronization example.

process(cl k_50mhz, input_cl k)

begi n

if input_clk'event and input_clk ='0" then -- falling edge
-- Latch input data (not shown)
wite_ptr <= wite_ptr + 1;
wite_trigger <= not wite_trigger; -- change this bit

end if;

if clk _50mhz' event and clk_50nhz = '1'" then -- 50 MHz process
wWite trigger_prev <= wite_trigger; -- save previous val ue
if wite trigger /= wite_trigger_prev then

sramdo wite <="1"; -- change detected, begin wite

end if;

end if;

end process;

This code fixed the problem of writes occurring at random locations but it introduced a new problem:
Writes would sometimes be “ dropped” — that is, the write procedure would never begin but the write
pointer would be updated, indicating that the request should have been seen. A pixel would haveto be
written several timesto guarantee that it had been set.

Thereason for thisisthat the synchronization is not actually occurring. The part of the process dependent
oncl k_50mhz isagain dealing with an asynchronous signal: wri t e_t ri gger, the very signal that was
introduced to solve the problem in the first place! Note that it is modified asynchronously according to the
input clock; so we are not much better off. The solution isto latch (buffer) wri t e_tri gger andthen use

it, asinlisting 4.2.

Listing 4.2 Correct synchronization example.

process(cl k_50mhz, input_cl k)

begi n

if input_clk'event and input_clk ='0" then -- falling edge
-- Latch input data (not shown)
wite ptr <= wite_ptr + 1;
wite_trigger <= not wite_trigger; -- change this bit

end if;

if clk_50mhz' event and clk_50mhz = '1' then -- 50 MHz process
wite_trigger_buf <= wite_trigger; -- latch it
wite trigger_prev <= wite_trigger_buf; -- save previous val ue
if wite_trigger_buf /= wite_trigger_prev then

sramdo wite <="'1"; -- change detected, begin wite

end if;

end if;

end process;

Now, the problem is solved.
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In the BartStation, it isi nput _cl k itself that is buffered and then the synchronized process monitors the
status of that signal until atransition from 1to Ois observed. This allowed meto removei nput _cl k
from the process sensitivity list altogether.

4.5 Interrupts

Assoon asthelast line of the display has been refreshed, the video controller enters the vertical blanking
period during which the electron beam in a CRT monitor is being repositioned to the top of the screen. An
interrupt is generated via a high-to-low transition on the Z80'sNM1 line. This occurs at 60 Hz and is useful
for timing and updating graphics.

Interrupts can be enabled or disabled using the settings mode of the video controller. Initially, they ought to
be disabled but it is always best to explicitly configure them.
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5. Programming Guide

An overview of the BartStation’ s software environment is provided here along with examples of how to
program the system. Compl ete demonstration programs can be found in Appendix D.

5.1 Memory Map
The complete memory map of the BartStation as seen by the Z80 is shown in table 5.1. All unspecified
address ranges are undefined and should not be accessed. Furthermore, the directional constraints should be

obeyed. Do not attempt to write to read-only addresses!

Table5.1 Memory map.

Start Address| End Size Function Direction
$0000 $3FFF 16 Kbytes ROM Read only
$8000 $8FFF | 1 byte (mirrored) Video Data Register Write only
$9000 $OFFF | 1 byte (mirrored) Control Register Write only
$A000 $AFFF | 1 byte (mirrored) Joypad Status Register Read only
$F000 $F3FF 1 Kbyte RAM Read/Write
$F400 $FFFF | 1 Kbyte (mirrored) | RAM (mirrored every 1KB) | Read/Write

The layout of the registersis described in the previous sections of this document in more detail.

Dueto minimal decoding, some devicesin the address space are “mirrored” repeatedly throughout different
memory locations. In other words, the same device may be accessible through several different addresses.
RAM, for example, isintended to be accessed between $F000 and $F3FF but it is aso appears from $F400
onwardsin 1KB intervals.

5.2 Memory Space, Stack, and Interrupts

This section describes the memory space, stack, and interrupts from the software’ s perspective.

Programs are stored in ROM, which is mapped from $0000 to $3FFF. Upon reset, the Z80 begins execution
at $0000. The IRQ vector is at $0038 and the NMI is at $0066. For more details about the Z80, refer to its
documentation.

At aminimum, we must define all of the vectors. It isalso important to immediately set up a stack pointer
so that NMIs may be processed without crashing the system. Because the stack grows down, alogical
location to place the stack pointer would be at the top of the RAM space. Listing 5.1 shows a sample
skeleton program.

Listing 5.1 Sample skeleton program demonstrating the bare minimum requirements for set-up.

Reset Vect or:
Execution begi ns here when the Z80 powers up.
| ORG $0
Reset Vect or:
I d sp, $F400 ; set SP to the top of the RAM area

di ; disable IRQs just to be safe
jp Start ; junp to program entry point

;| RQVector:
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Does not hing. | R shoul d never occur.

| ORG $38
| RQvect or :

reti

NM Vect or :
Triggered at the start of each VBL peri od.

| ORG $66
NM Vect or :
reti ; do nothing for now

; Start:
Programentry point.

'Start:
jp Start ; loop infinitely for now

An additional important step not shown here isto wait for at |east 2 seconds for the FPGA to configure
itself. None of my example programsin Appendix D do this, but they should. The FPGA loadsits
configuration from an on-board EEPROM and this takes some time. If the Z80 program accesses the video
controller while thisis occurring, the commands will have no effect. It is best to wait until the system is
known to be ready.

Another way of detecting readinessisto continuously attempt to enable interrupts (described in the next
section) and check that 2 or 3 interrupts have been generated. This should ensure the system is up and
running.

5.3 Video Registers

The video registers are located at $8000 and $9000. They are described in more detail in section4. On
power-up, the state of the video hardwareis largely undefined. The display may be on or off. It isbest to
begin by turning the display off, clearing the random contents of the frame buffer, and then re-enabling the
display. Listing 5.2 demonstrates how this may be accomplished.

Listing 5.2 Clearing the frame buffer with the display off.

Id hl', $9000 ; address of Control Register

Id (ht), 4 ; settings node

Id a, 0 ; disable interrupts and turn the display off

I d ($8000), a

call dearScreen ; your subroutine to clear the screen; assune it saves HL
I d (hl), 4

Id a, 3 ; turn interrupts and the display on

I d ($8000), a

Writing to the frame buffer is a multi-step process which is composed of setting up the internal write
pointer and then transferring data to the Video Data Register. The pointer is automatically incremented and
does not need to be specified again until anew location in the buffer is sought. Listing 5.3 demonstrates a
routine for setting up the address.

Listing 5.3 Frame buffer address set up.

Set Fr anmeBuf f er Addr ess:

: Sets the frame buffer address to the desired X Y coordi nate.
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I nput s:

BC = X coordinate (9 bits)

D

éet Fr ameBuf f er Addr ess:

I d hl, $9000

Y coordinate

Control Register

node 1: X coordinate | ow
low 8 bits of X coordinate
nmode 2: X coordinate high
high bit of X coordinate
node 3: Y coordinate

;Y coordinate

Writing pixelsisthen simply a matter of storing them to address $8000. Each time a write occurs, the
internal pointer isincremented. If it exceeds the limits of the current line, it wrapsto the next. If the lower
border is exceeded, the results are undefined. Care should be taken to avoid writing outside of the 76,800

pixel region.

5.4 A Simple Image Blitter

Listing 5.4 demonstrates a simple but complete and usable image blitter which copies a rectangular image
(stored as a linear 1-dimensional array of pixels, 1 byte each) to an arbitrary position in the frame buffer.
Notice that only the Y component is updated after the address has been set up for the first time. The code
takes advantage of the fact that when the Y position is re-loaded, the previously loaded X position will be

used to calculate the frame buffer address.

Blitlnage:

Listing 5.4 Blitter routine.

Copies an image fromnmenory to the frame buffer.

Destination X position.
Destination Y position.
| mage source address.

data register
comrand regi ster
set X position high to O

set X position | ow

I nput :
B = X size.
C =Y size.
D =
E =
H =
; Saves AF, BC, D, HL.
Blitlmage:
push af
push bc
push de
push hl
push hl
push bc
Id bc, $8000
Id hl , $9000
Id (hl),2
I d a,0
I d (bc),a
Id (hl), 1
Id a, d
I d (bc), a
pop bc
pop hl
yl oop
I d a3

set Y position
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Id ($9000), a
I d a, e
Id ($8000), a
I d a,0 ; data wite node
Id ($9000), a
push bc ; save X size
x| oop:
I d a, (hl) ; fetch pixe
inc hl
Id ($8000),a ; wite to franebuffer
dec b ; decrenent X count and | oop
Id a, b
cp 0
jr nz, xI oop
pop bc
inc e ; next line in franebuffer
dec ¢ ; decrenment Y count and | oop
I d a,c
cp 0
jr nz, yl oop
pop hi
pop de
pop bc
pop af
ret

5.5 Joypad

Information on how the joypad works can be found in section 2. Included there are procedures for how to
poll both 3- and 6-button joypads. Listing 5.5 is aroutine to read a 6-button joypad. The code for reading a
3-button pad would only include the first two reads from the status register as the rest are 6-button-specific.

Listing 5.5 Routineto read a 6-button joypad.

ReadJoypad:

Reads all 6 buttons.

DE = 0000 ZYXM UDLR BCAS (M-Mbde, S=Start)

; Qut put :
: Preserves all registers. Video node ends up as O

ReadJoypad:

push af ; save used registers
push bc

push h

I d hl, $9000 ; Control Register
Id bc, $A000 ; Joypad Status Regi ster
I d (hl),8 ; MIX=1

Id a, (bc) ; A=-- UDLRBC

sla a

sla a

I d e, a ;  E=UDLRBCOO

I d (hl),0 ; MJIX=0

I d a, (bc) ;. A=-- UDOOAS

and 3 ; A=000000AS

or e ;  A=UDLRBCAS

I d e, a ; E=UDLRBCAS
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I d (hl),8 ; MIX=1

nop
Id (hl),0 ; MJX=0

nop

Id (hl), 8 ;o MUX=1

Id a, (bc) ; A=-- ZYXMBC
srl a

srl a

and $F ; A=0000ZYXM
Id d,a ;. D=0000ZYXM

Id  (hl),0 ; MIX=0

pop hl ; restore registers
pop bc
pop af

ret

An important precaution is to avoid writing the joypad multiplex bit, located in the Control Register, during
an interrupt. Thisis because the mode bits for the video controller’sinput port will also be altered which
can disrupt video code that may have been executing when the interrupt occurred. It is best to poll the
joypads outside of interrupt routines.
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6. Conclusion

This project was a success and has taught me alot about the practical issuesinvolved in the design of
simple computer systems using 8-bit microprocessors and FPGAs. Three particular lessons |earned were
how to deal with asynchronous signalsin a synchronous design, an issue | expect to face again in future
projects, how to interface 5V logic to an LVCMOS FPGA, and how to design digital circuitsin VHDL
which can output aVGA signal.

| hope that readers of this documentation will find it helpful and will be encouraged to pursue similar
projects. The most expensive components of this project were the FPGA board and the device programmer
used to program the flash memory chips. Suitable FPGA boards can be found for aslow as $100 at the time
of thiswriting, which is what the Spartan-3 Starter Kit Board costs, but device programmers are typically
more expensive. It isfeasible to construct one for the particular chips used in this design, however. In my
case, the university’ s EE department had one available for me to use.

Should you attempt asimilar project: Good luck and have fun!
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Appendix A: Schematic of Z80 Cir cuit

The following page contains a schematic of the Z80 circuit. Unfortunately, the schematic resolution isto
high to fit in this document, so the result is not completely readable. Please refer to a separate schematic.
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Appendix B: Parts

The parts | used to construct my prototype are listed in table B.1 along with approximate cost, when
known.

Table B.1 Part list.

Quantity Part Total Price | Supplier
1 Z80 CPU, 8MHz (Z84C0008PEC) $3.05 Jameco
1 Flash memory, 64KB (CAT28F512) $5.25 Jameco
1 SRAM, 2KB (6116P-3) $1.49 Jameco
1 74HC154 $0.75 Jameco
1° 74HC08 $1.58 Jameco
2 74HC573 $0.62 Jameco
1 74HC14 $0.22 Jameco
1 8.000 MHz TTL oscillator, half can $1.32 Jameco
1 7805T, TO-220 package $0.35 Jameco
12 (100 pc. bundle) | 270 ohmor 300 ohm¥4W resistor $0.99 Jameco
1 (100 pc. bundle) | 10 K-ohm resistor $0.99 Jameco
1 (100 pc. bundle) | 1 K-ohmresistor $0.99 Jameco
o 0.1 uF ceramic disc capacitor, 25V, 20% $1.40 Jameco
1° 100 uF radia electrolytic capacitor, 50V, 20% $0.70 Jameco
1° 10 uF radial electrolytic capacitor, 50V, 20% $0.60 Jameco
1° Tactile switch®, two-pin, 5.0mm $5.20 Jameco
1 Male DC power jack, 2.1mm $0.49 Jameco
1 Male DB-9 connector, solder cup $0.56 Jameco
1 26 AWG solid wire” ? ?

1 MPJA 3220 T/P 4B/P breadboard (stock no. 4447 TE) | $22.95 MPJA
1 AC-DC wall transformer, 12VDC, 2.1mm female $10.95 Jameco
1 Spartan-3 Starter Kit Board $99.00 Xilinx

The total priceis approximately $159.45 and does not include the 26 AWG wire, taxes, or shipping.
The vendor web sites are:
Jameco: http://www.jameco.com

MPJA:  http://www.mpja.com
Xilinx: http://www.xilinx.com

The Spartan-3 Starter Kit Board may also be obtained from Digilent (http://www.digilent.com)

! The 74HC154 comesin both 0.3 -wide and 0.6 DIP configurations. The 0.3 model is recommended because it occupies less
space (it is the same width asthe other 74HC parts used.)

2 Indicates this part is only available in some minimum quantity. The price reflects this.

% | already had tactile switches available to me. | have not purchased this listed switch from Jameco, so take care to ensure it will work
with the design. It ought to be mountable on a breadboard (if you choose to implement the circuit that way) and in its default state
should be off (the connection will be broken.)

* | obtained 26 AWG solid wire from work. It's very useful for wiring the various buses and signals because it is so thin and flexible.

If you decide to purchase it, make sure theinsulation is not so thick asto make it the same diameter as breadboard hook-up wire. It
should be noticeably thinner.
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Appendix C: Video Controller VHDL Code and Constraints File

The subsequent pages contain the two files which define the video controller. Thefirst, vga.vhd, isthe
video controller VHDL code. The second, vga.ucf, is a Xilinx constraint file which defines pin
assignments.
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Bart Station Video Controller
by Bart Trzynadl owski, 2005-2006

A video controller designed for use with the Spartan-3 Starter Kit Board for
the BartStation honebrew vi deo gane system project.

vga. vhd

I npl ement ati on of the VGA video controller.

l'ibrary | EEE;

use | EEE. STD LOd C 1164. ALL;

use | EEE. STD LOG C ARI TH. ALL;
use | EEE. STD LOG C_UNSI GNED. ALL;

library UNISIM -- Xilinx primtives
use UNI SI M VConponents. al | ;

Defines the VGA controller interface.

entity VA is

port
(

-- 50MHz d ock

cl k_50mhz: in std_|l ogic;

-- VGA Signal s

vga_rgb: out std_|logic_vector(2 downto 0);
vga_hs: out std_l ogic;

vga_vs: out std_| ogic;

vga_vbl : out std_l ogic;

-- SRAM Pi ns

-- These are mapped to the actual FPGA pins connected to the SRAM I C.

sram pi ns_addr: out std_|logic_vector (17 downto 0);

srampins_io: inout std_|logic_vector(7 downto 0);
sram pi n_oe: out std_Il ogic;

sram pi n_we: out std_l ogic;

sram pi n_ce: out std_Il ogic;

sram pin_ce2: out std_|ogic;

sram pi n_ub: out std_l ogic;

sram pi n_| b: out std_l ogic;

-- lnput Port

nput (10): Control Register Enable. Active |ow

nput (9) : Video Data Register Enable. Active |ow

nput ( 8): Input dock. Wites are processed on falling edge.
nput (7): D7

nput (6) : D6

nput (5) : D5

-- input(4): D4
-- input(3): D3
-- input(2): D2 (R
-- input(1): DL (G
-- input(0): D0 (B)
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i nput _pi ns:

)
end VGA

-- VGA: Behavi oral

archi tecture Behavi oral

-- VGA Signals

in std_|l ogi c_vector (10 downto 0)

Architecture
I npl ementation of the VGA controller.

of VA is

-- A 25M# clock is generated for VGA timng.

si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal

cl k_25nhz:

hori zontal _counter:
vertical counter:
framebuf _addr:
framebuf _| i ne_addr:
di spl ay_enabl e:

i nterrupt_enabl e:

-- Inport Port Signals

si gnal
si gnal
si gnal

si gnal
si gnal

si gnal
si gnal

i nput :
i nput _cl k:
i nput _cl k_prev:

node:
addr _x:

addr _y:
write_addr:

std_l ogic;

std_l ogi c_vector(9 downto 0);
std_l ogi c_vector(9 downto 0);
std_l ogi c_vector (18 downto 0);
std_| ogi c_vector (18 downto 0);
std_l ogi c;

std_logic :="'0";

std_l ogi c_vector (10 downto 0);
std_logic :="'0";
std_logic :="'0";

std_l ogi c_vector (2 downto 0);
std_l ogi c_vector(8 downto 0);

std_l ogi c_vector(7 downto 0);
std_l ogi c_vector (17 downto 0);

-- SRAM Signal s and State Managenent

si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal

type sramstate_t

SRAM WAI TING - -

sram addr:
sramwite_addr:
sram read_addr:
sramdata wite:
sram dat a_r ead:

std_l ogi c_vector (17 downto 0);

std_l ogi c_vector (17 downto 0);
std_l ogi c_vector (17 downto 0);
std_| ogi c_vector (7 downto 0);
std_| ogi c_vector(7 downto 0);

sram ce: std_| ogi c;
sram ce2: std_l ogic;
sram oe: std_| ogi c;
sram we: std_l ogic;
sram ub: std_| ogi c;
sram | b: std_l ogic;
sram.io_t: std_| ogi c;

is

wait for command, place data on bus

SRAM VR TE, -- conplete a wite transaction
SRAM_READ -- conplete a read transaction
)
signal sramstate: sramstate_t := SRAM WAI TI NG
signal sram do_read: std_logic :="'0";
signal sramdo_wite: std_logic :="'0";
signal sramdata_read_buf: std_|l ogi c_vector(7 downto 0);
signal sramdata_wite_buf: std_l ogi c_vector(7 downto 0);
begi n
-- Map SRAM pins to Xilinx | O buffers
gl:
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for i in srampins_io' range generate
i0dO: iobuf port map
(
i => sramdata_wite(i),
io => srampins_io(i),
0 => sram data_read(i),

t => sramio_t -- 0 read?
)i
end generate gl
g2:
for i in srampins_addr'range generate
0a0: obuf port map
(

0 => sram pi ns_addr (i),
i => sram.addr (i)
)i
end generate g2
we: obuf port map
(
0 => sram pi n_we,
i => sramwe

)

oe: obuf port nmap

0 => sram pi n_oe
i => sramoe
)
ce: obuf port nmap
( .
0 => srampin_ce
i => sramce

ce2:’obuf port map

(
0 => sram pi n_ce2
i => sramce2

)5

ub: obuf port map

(
0 => sram pi n_ub
i => sram.ub

)
I b: obuf port map

(
0 => srampin_lb
i =>sramlb
)
i np:
for i in input_pins' range generate

np0: ibuf port nap
(

i => input_pins(i),
0 => input(i)
)

end generate inp;

-- Fixed signals

sramce2 <= '1"; -- nake sure second SRAM chip stays off the bus
sramlb <= "'0

sramub <= "'1";

-- Cenerate the 25MHz cl ock

process(cl k_50mz)
begi n
if clk _50mhz' event and clk_50nhz = '1' then
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cl k_25mhz <= (cl k_25nhz xor '1");
end if;
end process;

-- Input Port State Machine

process(cl k_50mz)

begi n

if clk _50mhz' event and clk_50nhz = '1' then

if

input_clk <= input(8); -- latch the asynchronous input clock
input_clk prev <= input_clk; -- save the previous |atched cl ock val ue
input_clk_prev ="'1" and input_clk ='0" then -- falling edge
if input(10) = '0" then -- Control Register enabled
nmode <= input (2 downto 0); -- nmode bits
elsif input(9) ="'0" then -- Video Data Register enabl ed
case node is
when "000" => -- data wite node

sramdata_wite_buf (2 downto 0) <= input(2 downto 0);
sramwite_addr <= wite_addr;
wite addr <= wite_addr + 1;
sramdo wite <="'1";
when "001" => -- address X | ow
addr_x <= addr_x(8) & input(7 downto 0);
wite_addr <= ("00" & addr_y & "00000000") + ("0000" & addr_y &

"000000") + (addr_x(8) & input(7 downto 0));

when "010" => -- address X high
addr _x(8) <= input(0);
wite_addr <= ("00" & addr_y & "00000000") + ("0000" & addr_y &

"000000") + (input(0) & addr_x(7 downto 0));

when "011" => -- address Y
addr_y <= input(7 downto 0);
wite_addr <= ("00" & input(7 downto 0) & "00000000") + ("0000" &

input (7 downto 0) & "000000") + addr_x;

when "100" => -- settings
di spl ay_enabl e <= i nput(0);
interrupt_enable <= input(1);
when ot hers =>
end case;
end if;

end if;

-- Wien a wite has conpleted, we nmust |ower the wite signal

if sramstate = SRAM WRI TE t hen

sramdo wite <='0";

end if;
end if;
end process;

-- SRAM St ate Machi ne

process(cl k_50nhz)

begi n

sramoe <= '0';

if clk_50mhz' event and cl k_50mhz = '1' then
case sramstate is
when SRAM VAI TI NG =>

if sramdo wite ="'1" then -- wite requested
sram addr <= sramwite_addr;
sramdata_wite <= sramdata wite_buf;
sramce <= '0';
sramwe <= '0';
sramio_t <='0";
sram state <= SRAM WRI TE;
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elsif sramdo_read = '1' then -- read requested
sram addr <= sram read_addr
sramce <= '0';
sramwe <= '1';
sramio_t <= "'1";
sram state <= SRAM READ,
end if;
when SRAM READ =>
sramce <= '1';
sramwe <= '1';
sramio_t <="'0'
sram dat a_read_buf <= sram data_read;
sram state <= SRAM WAI TI NG
when SRAM WR TE =>
sramce <= "'1";
sramwe <= '1';
sramio_t <="'0'
sram state <= SRAM WAI TI NG
end case
end if;
end process;

-- VGA Qut put

process(cl k_25nmhz)

begi n

if clk_25mhz' event and clk_25nhz = '1' then

-- Wien starting a new line, save the frame buffer address and only
-- update it every other line to halve the vertical resolution. Note
-- that the display begins at V = 39 so therefore, every QDD |line
-- will have the frame buffer updated and saved and the even line wll
-- restart there

if (horizontal _counter = "0000000000") then
if (vertical _counter >= "0000000000") and (vertical _counter <= "0000100111")
then -- 39
franebuf _addr <= "0000000000000000000"
franebuf _| i ne_addr <= "0000000000000000000"
el se

-- On odd lines, advance franme buffer by 320 pixels

if vertical _counter(0) ="'1" then -- odd lines
framebuf _| i ne_addr <= framebuf_|ine_addr + "0000000000101000000";
franmebuf _addr <= framebuf_|ine_addr + "0000000000101000000"

el se
franebuf _addr <= framebuf_|ine_addr

end if;

end if;
end if;

-- If the horizontal counter is between 144 and 783, we are within the
-- 640 pixel range of the visible part of the scanline. If the

-- vertical counter is between 39 and 518, we are in the visible part
-- of the screen (480 lines.)

if (horizontal _counter >= "0010010000") -- 144
and (horizontal counter < "1100010000") -- 784
and (vertical _counter >= "0000100111") -- 39
and (vertical _counter < "1000000111") then -- 519

-- Fetch the current pixel from SRAM (2 50MHz cl ock cycles) and
-- display it.

if display_enable = '1" then
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sramread_addr <= franebuf_addr (17 downto 0);
sramdo_read <= '1';
vga_rgb <= sramdata_read_buf (2 downto 0);
el se
sramdo_read <= '0';
vga_rgb <= "000";
end if;

-- Only advance every other pixel to halve the resol ution

if horizontal _counter(0) ="'1" then
franmebuf _addr <= franebuf_addr + 1;
end if;
el se

-- W are outside of the visible region, output black
vga_rgb <= "000";
sramdo_read <= '0';

end if;
if (vertical _counter < "0000100111") or (vertical _counter >= "1000000111") then
if interrupt_enable ='1" then
vga_vbl <= '0'; -- active low
el se
vga_vbl <= '1';
end if;
el se
vga_vbl <="'1";
end if;

-- Wthin this horizontal range, the H-sync signal nust be | ow
if (horizontal counter > "0000000000")
and (horizontal _counter < "0001100001") then -- 96+1
vga_hs <="'0'";
el se
vga_hs <= "'1';
end if;

-- Cenerate the \-sync signal in the appropriate range

if (vertical _counter > "0000000000")

and (vertical _counter < "0000000011") then -- 2+1
vga_vs <= '0';

el se
vga_vs <= '1';

end if;

-- Increment the horizontal and vertical counters and reset them when
-- starting a new |line.
hori zontal _counter <= horizontal _counter+1;
if (horizontal _counter = "1100100000") then -- 800
vertical _counter <= vertical _counter+1;
hori zontal _counter <= "0000000000";

end if;
i f (vertical _counter="1000001001") then -- 521
vertical _counter <= "0000000000";
end if;
end if;

end process;

end Behavioral ;



Bart Station Video Contr
by Bart Trzynadl owski,

vga. ucf

HHHFHHE HHEHFHHFHRE

ol l er
2005- 2006

NET "cl k_50nhz" LOC = "t9" ;

NET "vga_rgb<2>" LOC = "r12" ;

NET "vga_rgb<l>" LOC = "t12" ;

NET "vga_rgb<0>" LOC = "r11" ;

NET "vga_hs" LOC = "r9" ;

NET "vga_vs" LOCC = "t10" ;

NET "vga_vbl" LOC = "d10"; #
NET "sram pi ns_addr<0>" LOC = "I5" ;
NET "sram pi ns_addr<10>" LOC = "g5"
NET "sram pi ns_addr<11>" LOCC = "h3"
NET "sram pi ns_addr<12>" LOCC = "h4"
NET "sram pi ns_addr<13>" LOC = "j4"
NET "sram pi ns_addr<14>" LOCC = "j 3"
NET "sram pi ns_addr<15>" LOC = "k3"
NET "sram pi ns_addr<16>" LOC = "k5"
NET "sram pi ns_addr<17>" LOC = "I3"
NET "srampi ns_addr<1>" LOC = "n3" ;
NET "sram pi ns_addr<2>" LOC = "m4" ;
NET "sram pi ns_addr<3>" LOC = "nB" ;
NET "sram pi ns_addr<4>" LOC = "14" ;
NET "sram pi ns_addr<5>" LOC = "g4" ;
NET "sram pi ns_addr<6>" LOC = "f3" ;
NET "sram pi ns_addr<7>" LOC = "f4" ;
NET "sram pi ns_addr<8>" LOC = "e3" ;
NET "sram pi ns_addr<9>" LOC = "e4" ;
NET "srampin_ce" LOC = "p7" ;

NET "sram pi n_ce2" LOC = "n5";

NET "sram pi ns_i o<0>" LOC = "n7" ;
NET "sram pins_io<1l>" LOC = "t8" ;
NET "sram pins_io<2>" LOC = "r6" ;
NET "sram pins_io<3>" LOC = "t5" ;
NET "srampin_lb" LOC = "p6" ;

NET "srampin_oe" LOC = "k4" ;

NET "sram pin_ub" LOC = "t4" ;

NET "srampin_we" LOC = "g3" ;

NET "input_pi ns<0>" LOC = "c7"; # 10
NET "input _pins<1>" LOC = "e7"; # 9
NET "i nput _pi ns<2>" LOC = "c6"; # 8
NET "input _pins<3>" LOC = "d6"; # 7
NET "input_pins<4>" LOCC = "d8"; # 13
NET "input_pins<5>" LOC = "c9"; # 14
NET "input_pi ns<6>" LOCC = "d7"; # 11
NET "input_pi ns<7>" LOC = "c8"; # 12
NET "input_pins<8>" LOC = "d5"; # 5 --
NET "i nput _pi ns<9>" LOCC = "c¢5"; #
NET "i nput _pi ns<10>" LOC = "e6"; #

15

6 --
4 --

A video controller designed for use with the Spartan-3 Starter Kit Board for
the BartStati on homebrew vi deo game system project.

Constraints for Spartan-3 Starter Kit Board (pin assignnents.)

WR CLK

RE®& (data) Enable
REGL (commrand) Enabl e
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Appendix D: Sample Programs

Two complete sample programs are included here: A 6-button joypad tester and an animated sprite demo
which allows the player to move a character left and right on the screen. The sprite consists of 8 frames

(figure D.1) of animation and was ripped from id Software’ s classic PC game, “ Commander Keen:
Invasion of the Vorticons.”

e—n Ire-"-" be-n
v BRI !

h
=0

G

h

FigureD.1 “Garg” spritesor the playable “ Garg Demo.”
To assembl e these programs, use TASM, the table assembler by Speech Technologies, Inc. It can be found

freely on the web. The “Garg Demo” requires that the sprites be converted to raw binary format and
appended to the binary output that TASM produces.
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; Joypad Tester
by Bart Trzynadl owski
; Decenber 20, 2005 and January 7, 2006

; joypad.asm

Reads the 6-button joypad and displays the button status on the screen.

IEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE T
)

; Vector Table

IR R R E SRR SR SRS E SRR R R R SRR R R R R R R R SRR R R R R R R R R R R R R R R EEEEEEEEEEEEESEEEESESEEEEESEESESRE.S
;

; Reset Vector:

; Execution begins here when the Z80 powers up.

)

. ORG $0

Reset Vect or:
di ; disable interrupts
I d sp, $F400 ; set SPto the top of the RAM area
jp Start

;I nterruptVector:
; NM Vector:

Do not hi ng.

i

. ORG $38
I nt errupt Vect or:
reti

. ORG $66
NM Vect or :
reti

ckkkkkkkhkhkhkhkhkhkkhkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkhkkkkkkkkk,kkkkkk*x*%

; Main Program

B R R R R R R R R R R R R R R R R R R R R R R R R R
1

; Start:

; Programentry point.

1

Start:

Cl ear the screen

Id hl', $9000 ; control reg

I d (hl), 4 ; settings node

I d a,0

I d ($8000),a ; disable interrupts and turn screen off
call dearScreen

Id (hl), 4

I d a, 1l

I d ($8000),a ; turn display on

; Main Loop:

; - Read joypad
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; - Draw appropriate sprites
; - Loop forever.

Loob:

; Read j oypad buttons into DE

E:al | ReadJoypad

Draw the correct sprites. Sprite placenent is (relative to sone base
X, Y coordi nates):

Down 5,10
Left 0,5

Ri ght 10,5
Start 20,5
Mode 25,5
35,10
40, 10
45,10
35,0
40,0
45,0

L Up 5,0

N<XO®>

ush de ; save joypad buttons stored in D
d a, e ; load UDLRBCAS into A

b, 5 ; set up size of sprite -- same for all!
c,5

1

d, 100+20

e, 100+5

hl, spr_start

Dr awBut t onSt at us
d, 100+35

e, 100+10

hl, spr_a

Dr awBut t onSt at us
d, 100+45

e, 100+10

hl, spr_c

Dr awBut t onSt at us
d, 100+40

e, 100+10

hl, spr_b

Dr awBut t onSt at us
d, 100+10

e, 100+5

hl, spr_right

Dr awBut t onSt at us
d, 100+0

e, 100+5

hl, spr_left

Dr awBut t onSt at us
d, 100+5

e, 100+10

hl, spr_down

Dr awBut t onSt at us
d, 100+5

e, 100+0

hl, spr_up

Il DrawButtonStatus

DOO0O0DPDOOODNOOODPOOOPNOOODPIOOOIOOOOOOO

(e ¢ B © B @ B A e B B

e ; retrieve renmaining buttons in D (ZYXM
; transfer themto A
; size of sprite
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I d hl , spr_node

call DrawButtonStatus
I d d, 100+35

I d e, 100+0

I d hl, spr_x

call DrawButtonStatus
I d d, 100+40

I d e, 100+0

I d hl, spr_y

call DrawButtonStatus
I d d, 100+45

I d e, 100+0

I d hl, spr_z

call DrawButtonStatus

ip Loop

)

ReadJoypad:

Reads all 6 buttons.

DE = 0000 ZYXM UDLR BCAS (M=Mbde, S=Start)

; Qut put:
; Preserves all registers. Video node ends up as O.

ReadJoypad:

push af ; save used registers
push bc

push hl

Id hl, $9000 ; Control Register
Id bc, $A000 ; Joypad Status Register
Id (hl),8 ;o MUX=1

I d a, (bc) ; A=-- UDLRBC

sla a

sla a

Id e a ; E=UDLRBCO0O

Id (hl),0 ; MUX=0

Id a, (bc) ; A=-- UDOOAS

and 3 ; A=000000AS

or e ; A=UDLRBCAS

I d e, a ;  E=UDLRBCAS

Id (hl),8 ;o MUX=1

nop

Id (hl),0 ;. MUX=0

nop

Id (hl),8 ;o MUX=1

I d a, (bc) i A=-- ZYXMBC

srl a

srl a

and $F ; A=0000ZYXM

Id d, a ; D=0000ZYXM

Id (hl),0 ;. MUX=0

pop hl ; restore registers
pop bc

pop af

ret

Dr awBut t onSt at us:

Shifts in the next button fromA Assunmes that B, C, D, and E have been set
; up for DrawSprite() appropriately. HL nust be set to the button sprite.
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use supplied sprite in HL
blank it out

if pressed,

test button
ot herw se,

nc, button_pressed ;
hl, spr_bl ank

DrawSprite

rrca
i
cal l
ret

r
d
but t on_pr essed:

Dr awBut t onSt at us:
Sprites (5x5)

)

[ejooloNe] [ejooloNe] oOOoOMN~OO oOOoOMN~MOO oOOoOMN~MOO OO OoOOoONM~ [ejololoNe] oOoooo [ejololoNa] ~MNO OO
Co0C0oco OoNOoOo ONNNGO ONoOoo oooNo OoNNo OooNNo oNooN NoNNN oNoN
O0ddocd NoNoN NoNoN NNNNoS oNNNN ONSoN oNooN oNooN NoNoN ooNo
.0,0,0,0,0, ONNNGS..CoNod oNoOdo oodoNoS ONOSoN OSNSoN oONoOoON.oNNSN oNoN
n0,070,070,tnu,nu,_/,nu,nu,.mJnu,nU,nU,AU,AU, O,O,_I,O,O,MO,O,_I,O,O, CONNGO ~NNNNN 070,777,07N070,070,07 ~Nooo
00000000000 00000000000000000..00000..00000..00000-,00000..2000
S TTTTT - TTTTT - TTTTT ST TTTTOTTTTDO a_dddddb_dddddC_ddddds_ddddd X_dddd
S S S S —

- = = =
o [oX [oX o o o o o (o8
(%] [%2] [%2] (%] (%] (%] (%] (%] (%]

al

spr
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.db 7,0,0,0,7
Spr_y:
.db 7,0,0,0,7
.db 0,7,0,7,0
.db 0,0,7,0,0
.db 0,0,7,0,0
.db 0,0,7,0,0
spr_z:
.db 7,7,7,7,7
.db 0,0,0,7,0
.db 0,0,7,0,0
.db 0,7,0,0,0
.db 7,7,7,7,0
spr _node
.db 7,7,0,7,7
.db 7,0,7,0,7
.db 7,0,7,0,7
.db 7,0,0,0,7
.db 7,0,0,0,7

IEEEEEEEEEREEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEREEREEREEREEREEEEE RS RS EEEEEEEEEEE T
)

. Vide

IR EEEEEEEEREEEEEEE R SRR R R R R R R SRR R R R R R R R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE T
)

)
i
)
i
)

I npu
B
C
D

HL

o Functions

DrawSprite:

t:

si ze.
posi ti on.

X
Y
X
Y position.

Draws a sprite on the screen.

Sprite address.

Saves AF, BC, DE HL.

;
;
;
;
. E
;
;
;
;

Dr awSp

rite
push af
push bc
push de
push hl
push hl
push bc
Id bc, $8000
Id hl', $9000
I d (hl),2
I d a,n0
I d (bc), a
Id (hl),1
I d a, d
I d (bc),a
pop bc
pop hl
yl oop
I d a3
Id ($9000), a
I d a, e
Id ($8000), a
I d a,n0
I d ($9000), a
push bc ;
x| oop
I d a, (hl) ;
inc hl

data register

comrand regi ster
set X position high to O

set X position | ow

set Y position

data wite node

save X size

fetch pixe



I d ($8000),a ; wite to franmebuffer
b

dec ; decrenent X count and | oop
I d a,b

cp 0

jr nz, x| oop

pop bc

inc e ; next line in framebuffer
dec c ; decrenent Y count and | oop
I d a,c

cp 0

jr nz, yl oop

pop hl

pop de

pop bc

pop af

ret

Cl ear Scr een:

O ears the screen to black. Saves BC, HL, DE and destroys everything el se

Qe

ear Screen

push bc

push hl

push de

I d a1l

Id ($9000),a ; set address X | ow
I d a0

Id ($8000), a

I d a, 2 ; set address X high
Id ($9000), a

I d a0

Id ($8000), a

I d b, 239 ; 240 lines, start clearing at |ast one
Id de, 1

C ear Screen_yl oop

I d a3

Id ($9000),a ; set address Y

I d a, b

Id ($8000), a

I d a0 ; data node

Id ($9000), a

I d hl, 320 ; 320 pixels

d ear Scr een_xI| oop
Id ($8000),a ; wite black pixe

scf ; clear carry

ccf

sbc hl, de ; X loop

jr nz, d ear Scr een_x| oop

I d a, b ; if we cleared line 0, quit
cp 0

jr z, O ear Screen_end

sub 1 ; otherw se, keep going

Id b, a

ip Cl ear Screen_yl oop
Qd ear Screen_end

pop de
pop hl
pop bc
ret

. END
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Gar g Denvo!
by Bart Trzynadl owski
Decenber 20, 2005 and January 7, 2006

deno. asm

Let's you nove a Garg around the screen. The sprites were ripped from
Commander Keen: |nvasion of the Vorticons by id Software.

R R R R R R R R R

; Constants
RS S S S S S S SRS S S E RS S SR RS ESE RS SRR EREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEIEEES
Vari abl es

Addresses for variables stored in RAM

i
)
i
)
i

VBL = $F001 ; VBL counter

PLAYER X = $F002 ; X position of player

PLAYER Y = $F003 ; Y position

PLAYER VX = $F004 ; velocity X

PLAYER VY = $F005 ; velocity Y

PLAYER JUWP = $F006 ; incremented each frane junmp button is held down for
PLAYER X_PREV = $F007 ; X position during previous update cycle
PLAYER Y_PREV = $F008 ; X position during previous update cycle
ANl M_PTR = $FO0A ; base of 2-byte pointer to animation sequence
Const ants

SPRI TE_W DTH = 23 ; width of sprite in pixels

SPRI TE_HEI GHT = 31 hei ght

GRAVITY = 1 accel eration due to gravity

TERM NAL_VELOQI TY = 9
VALK _SPEED = 1
MAX_JUMP = 0

maxi mumvertical speed
wal ki ng speed (MJST be < SPRI TE W DTH 2)
??? maxi num vel ocity due to junp

IR RS SRR R R R RS SRR R R SRR R R R R R S R R R R R R S R R R R R R S R RS SRR SRS E R R R R R R R R R R R R R
’

; Vector Table

IR RS SRR R R RS SRR R R RS R R R R R R R S R R R R R R R R R R R R R R R SRR SRS RS EEEEEE R R R R R R R R R R R R R
’

Reset Vect or:

Execution begi ns here when the Z80 powers up.

. ORG $0

Reset Vect or:
di ; disable interrupts
I d sp, $F400 ; set SPto the top of the RAM area
jp Start

I nt errupt Vector:

Do not hi ng.
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. ORG $38
I nterrupt Vector:
reti

; NM Vector:

; Triggered at the start of the VBl ank period. |Increments VBL.

" ORG $66

NM Vect or :
push af
Id a, (VBL)
inc a
I d (VBL), a
pop af
reti

IR EEEEEEEEEEEEEEE R SRR R R R R R R SRR R R R R R R R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE T
)

; Main Program

IEEEEEEEEEREEEEEEE R EEEEEEEEEEEEEEEEEEEEREEEEREEREREEREEREEREEEEEEEEEEE R TR SRR ST EEEEEEE T
)

Start:

Programentry point.

)
i
)
i
)

Start:
Clear screen and enable interrupts

hl , $9000 ; control reg

(hl), 4 ; settings node

a,0

($8000),a ; disable interrupts and turn screen off
d ear Scr een

(hl), 4

a, 3

($8000),a ; turn display and interrupts on

coogpgOo0O0Q

—_——— g ——— — -

Initialize player

a,n0

(PLAYER X), a

(PLAYERY), a

(PLAYER VX), a

(PLAYER_VY), a

(PLAYER_JUWP), a

hl,animidle ; get address of idle anination

(ANIM PTR), hl ; store as current ani mati on pointer

00000000

Mai n Loop:

; - Read inputs

; - Update player velocities

; - Apply accel eration

; - Save old coordinates

; - Update player coordinates

; - Performout- of -bounds checks and cl anp appropriately
; - Wit until VBL

; - Erase sprite

; - Draw sprite at updated coordinates

Mai ’nLoop:

; Read j oypad



Id hl, $9000 ; control reg

I d de, $A000 ; joypad status
I d (hl),8 ;o omux =1

I d a, (de) ; A= --UDLRBC

I d b, a ; save copy in B

; Update player velocities

Ld hl,animidle ; default animation

Id (ANIM_PTR), hl

and  $08 ; 1f LEFT is pressed (0), nove left
a, 0

nz,no_| eft

hl,animwal k_| eft ; queue anination...

(ANIM PTR), hi

a, - WALK_SPEED

—_—
o

—
—

>
o

(PLAYER VX), a

a,b ; get button data

$04 ; if RRGHT is pressed, nove right
nz, no_ri ght

hl, ani m wal k_ri ght ; queue ani mation...

(ANIM PTR), hl

a, WALK_SPEED

(PLAYER VX), a

o

<))
o000~ 00M®oOo0oo0

—_—————

no_right:

; TODO | npl enent junping. ..

Apply accel eration (junping and gravity)

Id a, ( PLAYER_VY)

add a, GRAVITY

cp TERM NAL_VELCCI TY ; check for termnal velocity

jr nc, dont _cl anp_vy

I d a, TERM NAL_VELOCI TY ; if reached, clanp the velocity to that
dont _cl anp_vy:

Id (PLAYER VY), a

Save ol d coordi nat es
a, (PLAYER X)
(PLAYER X_PREV) , a

a, (PLAYERY)
(PLAYER_Y_PREV) , a

Updat e pl ayer coordinates (ie., apply velocities!)

a, (PLAYER X)
b, a

a, (PLAYER VX)
a, b
(PLAYER X), a
a, (PLAYER_Y)
b, a

a, (PLAYER _VY)
a, b
(PLAYERY), a

o

—_—y ———— g —— —-
Q.%Q.Q.Q.Q_D.Q.Q.Q.

Per f or m out - of - bounds checks.

There is a trick here: W nerely assune that the maxi mum X coordinate is
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; 255 for the purpose of this demo. Therefore, if the player X exceeds

; (256 - SPRITE_WDTH 2), we assune that the player has wandered too far
; left and clanp to 0. Then, we check for the coordinate exceedi ng

; (256 - SPRITE_WDTH) and clanp there.

This is all under the assunption that WALK_SPEED < SPRI TE W DTH 2.

Id  a, (PLAYER X)
cp  256-(SPRITE_WDTH 2)

jr c,no_clanp_l eft ; if carry, no need to clanp to X=0
I d a,n0
I d (PLAYER _VX), a ; if clanmping X, also kill velocity

no_clanp_left:
cp (256- SPRI TE_W DTH)

jr c,no_clanp_right ; if carry, we are to the left of the test pt.
I d a,n0
I d (PLAYER_VX), a ; kill velocity

I d a, 256- SPRI TE_W DTH
no_cl anp_right:

Id (PLAYER X), a ; wite back the clanped X coordinate

Id a, (PLAYER_Y) ; clanp Y coordinate now to bottom of screen
cp 240- SPRI TE_HEI GAT

jr ¢, no_cl anp_bott om

I d a, 0

I d (PLAYER VY), a

Id a, 240- SPRI TE_HEI GHT
no_cl anp_bot t om

| d (PLAYER YY), a

; Vit until VBL

cal | VaitVBL
call WaitVBL
call WitVBL

Erase sprite at old |location and draw new one

b, 23

c,31

a, (PLAYER_X_PREV)
d,a

a, (PLAYER_Y_PREV)
e, a

hl, spr_bl ank
DrawSprite

0O —— ——— — — ..
[V eNoNecNoNoNoRoN

; Draw sprite at new | ocation using current animation frame

id a, (VBL) ; use refresh rate/ 8, and then nmultiply by 2 because

srl a ; each pointer is 2 bytes. So only shift twice.
srl a

and  $06 ; only 4 animations. ..

I d e, a

Id d, 0

I d hl, (ANNM PTR) ; get base of animation

add hl, de ; add in the offset

I d a, (hl) ; get low byte of sprite address

I d e, a

inc hl

Id a, (hl)

I d d, a

push de

pop hl ; transfer address of sprite to HL
I d a, (PLAYER_X)

Id d, a
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I d a, (PLAYER_Y)
I d e, a

call Drawsprite
ip Mai nLoop

ckkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkhkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhhhhhddhkhkhkkkkkxk**x*%
)

;. Video Functions

IEEEEEEEEEREEEEEEEEEEEEEEEEEEEREEREEREEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE T
)

Wi t VBL:

Wiits until the next VBl ank period has started

)
’
)
’
)

Wi t VBL

push af

push bc

Id a, (\vBL)

I d b,a ; old VBL counter into B
Wi t VBL_| oop:

I d a, (VBL)

cp b

jr z, Wi t VBL_| oop

pop bc

pop af

ret

DrawSpri t e:

Draws a sprite on the screen.

I nput :
B = X size.
=Y size.
D = X position.
E = Y position.
HL = Sprite address.

;
;
;
;
;
;
; C
;
;
;
;
;

Saves AF, BC, DE HL.

iDraWSpri te:

push af
push bc
push de
push hl
push hl
push bc

Id bc, $8000 ; data register

Id hl, $9000 ; command regi ster
I d (h),2 ; set X position highto O
I d a,n0
Id (bc), a
I d (hl), 1 ; set X position | ow
I d a,d
I d (bc),a
pop bc
pop hl
yl oop
I d a, 3 ; set Y position
Id ($9000), a
I d a, e
Id ($8000), a
I d a,n0 ; data write node
Id ($9000), a
push bc ; save X size
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x| oop:

I d a, (hl) ; fetch pixel

inc hl

I d ($8000),a ; wite to franebuffer

dec b ; decrenent X count and | oop
I d a,b

cp 0

jr nz, x| oop

pop bc

inc e ; next line in framebuffer
dec c ; decrenent Y count and | oop
I d a,c

cp 0

jr nz, yl oop

pop hl

pop de

pop bc

pop af

ret

Cl ear Scr een:

O ears the screen to black. Saves BC, HL, DE and destroys everything el se

Qe

ear Screen
push bc
push hl
push de
I d a1l
Id ($9000),a ; set address X | ow
I d a0
Id ($8000), a
I d a, 2 ; set address X high
Id ($9000), a
I d a0
Id ($8000), a
I d b, 239 ; 240 lines, start clearing at |ast one
I d de, 1
C ear Screen_yl oop
I d a,3
Id ($9000),a ; set address Y
I d a, b
Id ($8000), a
I d a0 ; data node
Id ($9000), a
I d hl, 320 ; 320 pixels

d ear Scr een_xI| oop
Id ($8000),a ; wite black pixe

scf ; clear carry

ccf

sbc hl, de ; X loop

jr nz, d ear Scr een_xI| oop

I d a, b ; if we cleared line 0, quit
cp 0

jr z, O ear Screen_end

sub 1 ; ot herwi se, keep going

Id b, a

ip Cl ear Scr een_yl oop
d ear Screen_end

pop de
pop hl
pop bc
ret
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The tabl es consist of pointers to

ght:
spr_garg + (4*23*31)

spr_garg + (0*23*31)
spr_garg + (1*23*31)
spr_garg + (2*23*31)
spr_garg + (3*23*31)
spr_garg + (6*23*31)
spr_garg + (7*23*31)
spr_garg + (6*23*31)
spr_garg + (7*23*31)
spr_garg + (5*23*31)
spr_garg + (4*23*31)
spr_garg + (5*23*31)

. dw
. dw
. dw
. dw
. dw
. dw
. dw
. dw
. dw
. dw
. dw
. dw

Ani mations are hard-coded to be 4 franes.

sprites and are cycled in sequence
Bl ank sprite to erase with

Sprite Data
IR SRR R R R RS R R R R R R SRR R R R R R S R R R R R R R R R R R R R R R S R RS SR SRR R R R R R R R R R R R R R R R

IR RS R R R R R RS R R R R R SRR R R R R R S R R R R R R R R R R R R R R S R RS SRR RS SRS E R R R R R R R R R R R

animwal k_left:
animwal k_ri

anim.idle

)
’
)
i
)
i

[eojeolojojolooNo o)

X . .
c

[eojolojojooloNo N

al

— 0000000000
O T TTOTTOTTOTDOT

spr_

[elojolojojololojojoooloojoojooloNoNoNe]

[cNeolololololololololojololololololololoNeNae]

000000000000 00000000020
jelehehehohohohohohohoholholholholholholholholholho o]

Garg sprites are appended as raw binary data to the ROMfile
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Appendix E: Pictures

Here are some photographs of my implementation of the BartStation. Figure E.1 shows the whole system;
the 6-button Segajoypad, the Spartan-3 board, and the Z80 circuit breadboard.

-~

FigureE.1 Coplete system.

Figure E.2 shows the Z80 board up close.

Figure E.2 The Z80 board.
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Figure E.3 The “'Garg Demo” running.

And, finaly, figure E.3 shows the “Garg Demo” running.
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